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Abshaet We present a long-range hopping tight-binding model in which the ensemble averaged 
density of states, p(E), undergoes a gradual transition from a homogenous form with almost no 
variation to swngly peaked behaviour as an external e l d c  field grows. The model consists 
of N x N band random "ices of bandwidth b. The carresponding rnauix elements. h,j .  have 
all vanishing average except on the diagonal where, (hi;) = ari. Here, the parameter o! plays the 
role of the electric field. We approximate the behaviour of the width, ai. of the local density 
of states, m(k), and use it to predict the value of (I m u n d  which the transition is centred. 

1. Introduction 

Random matrices serve as models for a wide variety of physical systems relevant to solid 
state physics [I], liquid theory 121, nuclear physics [31, atoms [41, molecules [5], and chaotic 
Hamiltonians [6]. In general, these apply to complex systems where details of interactions 
are either unavailable or unnecessary for a meaningful understanding of its properties. 
Instead, a statistical representation of the Hamiltonian is realized in the form of a random 
matrix, whereby the quantities of interest are obtained by an ensemble average over such 
representations [7]. For example, the energy level spacing statistics, P(s) ,  for a sh-ongly 
chaotic, time-invariant, spinless Hamiltonian can be obtained from an ensemble of N x N 
symmetric random matrices whose members contribute N - 1 eigenvalue spacings each to 
the overall distribution. In the simplest model, known as the Gaussian orthogonal ensemble 
(GOE), the corresponding matrix elements are normally distributed with zero average and 
variance which is twice as large for the diagonal elements than for the off-diagonal ones. 
Eigenstates of the GOE have elements with fixed variance and therefore the overlap between 
any pair of such states is large. The corresponding energy levels repel each other and this 
leads to a P ( s )  that is very close to a Wigner distribution. 

Around the same time as the appearance of the GOE, Wigner [8] introduced another 
ensemble whose matrix elements are normally distributed such that 

(h i j )  = OriSij 

where, for odd N ,  the indexes i, j run from - ( N  - 1)/2 to ( N  - 1)/2. This is the banded 
random matrix ensemble (BRME). It has been used in the analysis of several different 
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problems 19-13], In particular, we have used the BRME as a further refinement of the GOE 
in modelling ergodic Hamiltonians [1&13]. Due to semi-classical constraints, the latter 
display a structure which, in tum, is mimicked by the BRME. For a particular Hamiltonian, 
the values of the parameters b and a can be determined via relations of the Weyl type, 

The ensemble of (1) can also be interpreted as a long-range hopping tight-binding model 
for an electron on a one-dimensional disordered lattice under the influence of a constant 
electric field, a, that is 
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While tight-binding models (TBM) are easier to study than Ha itself, they are known to 
behave somewhat differently from the latter. TBMs display discrete spectra and localized 
states 1141. On the other hand, it was rigorously proven that the eigenstates of He are 
extended and its spectrum is continuous [15]. This discrepancy is due to the single-band 
approximation underlying the derivation of mMs. It is assumed that the energy gap between 
consecutive bands is much larger than their width and that, consequently, no mixing between 
bands occurs. However, since in an infinitely long system the electric potential term in H. is 
unbounded, all the bands overlap and the mM approximation clearly fails. This description 
is best illustrated in the sloping-band picture in which the consequence of the electric field 
is to make the energy bands linearly vary with the coordinate. In turn, however, this picture 
relies on the assumption of a characteristic length-scale separation between the atomic and 
the electric potentials [16]. 

Both the results of [I51 and the failure of the TBM approximation do not necessarily 
carry over to the case of a system of finite size, N .  In particular, if the total variation of the 
potential energy term, Nu, is much smaller than the zero field energy gap to adjacent bands, 
EG, one expects the appropriate tight-binding model to accurately reproduce the properties 
of H.. Accordingly, we introduce the BRME as a tight-binding model for short, disordered ID 
wires in strong elecbic fields such that N << EGJLY. In contrast with previously studied DMs, 
the BRME contains practically no assumptions aside from the singleband approximation. 
First, the hopping range is a free parameter rather than the standard assumption of only 
nearest-neighbour hopping. Second, the hopping matrix element is a random variable which 
for the case of a disordered system, is a more natural choice than the usual constant hopping. 
We therefore expect that phenomena occurring in the BRME will also OCCUI in Ha if the 
single-band approximation holds in the relevant range of parameters. 

The purpose of this paper is to study the behaviour of the ensemble averaged density 
of states, p ( E ) ,  for the BRME. In particular, we find that a transition occurs in the p ( E ) ,  
between a homogeneous form and a strongly peaked behaviour. While at small values of the 
field, p ( E )  = 1/Nn is constant, for large a it is very small everywhere except for an O(u) 
range around the Stark ladder levels, Ej = ai. This transition corresponds to the breakdown 
of the sloping-band picture. In the next section, we describe the detailed properties of this 
transition and in section 3 possible extensions to this work are discussed. 

2. Results 

In the absence of electric field, a = 0, it was recently shown [I71 that p ( E )  has the form 
of a semicircle. That is, whenever 1 << b << N ,  

2 2 112 p ( E )  = -(? - E ) 
zr2 (3) 
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where r2 = 8bu2. This result is similar to the corresponding one for the GOE [SI. There, 
p ( E )  also takes the form of a semicircle for N >> 1, only that r2 = 4 N d .  Deviations 
from (3) due to finite b take the form of Lifshitz tails. Generalized versions of the BRME 
with variances that decay smoothly from the diagonal also display semicircular densities 
of states. Specifically, (3) still holds subject to the substitution, 2b02 + li E.& as 

J ‘J. . long as 1; is the same for all i. Moreover, these results are valid for arbitrary probability 
distributions of the matrix elements as long as averages vanish and variances are finite. 

As far as the eigemtates are concerned [lo, 18-20], it is known on general grounds that 
these are exponentially localized for the BRMB at zero field. The corresponding localization 
length, L, satisfies L = cb2. For N = O(L),  finite size corrections become significant [18], 
and LN = NFl(x  b2 /N) .  In the N >> L regime, the overwhelming majority of adjacent 
levels correspond to states which have vanishingly small overlap with each other. Such 
levels do not repel and this leads to a Poisson spacing distribution. 

Now consider the behaviour for small but finite a. In previous work [lo, 111, we 
have shown that the spacing distribution, P(s) .  for the BRME displays a transition between 
a Poisson shape and a Wigner one. This occm when the local densities of states 
corresponding to consecutive diagonal blocks of size L become centred at energies which, 
due to the electric field, become further apart from each other than their width. On the high 
field side of this transition, levels corresponding to states with small spatial overlap are 
energetically separated and therefore cannot be adjacent. As a consequence, adjacent levels 
strongly repel and the Wigner spacing distribution is obtained. The ratio of the two energy 
scales involved in this argument, y = L01/(4-4%), uniquely determines the intermediate 
forms of the P(s) .  Since L = b2 f (y wb3”), we conclude that y ( y )  and the transition 
is centred around y N 1. On the other hand, the average density of states of the BRME is 
constant in this range of a and shows no indication of the transition in P(s). 

As the field is further increased, another transition is observed, which however modifies 
simultaneously both P(s)  and p(E) .  It occurs when the average level spacing, a, exceeds 
the energy width of the local average density of states, a(.@, corresponding to a single 
site. In thii transition, the spacing distribution evolves from a Wigner form to a Gaussian 
of width J f / a  that is centred at s = 1. In what follows, however, we shall focus on the 
behaviour of the density of states alone. 

Members of the BRME may be written as H = Ho + HI, where Ho is a diagonal matrix 
with non-random elements varying uniformly between -(N - I)w/2 and (N - l)a/2. 
Thus, for N sufficiently large, the energy range of the specbum is O(Na)  if a > 0 and is 
4& at a = 0. Consequently, p(E)  is discontinuous at 01 = 0. Moreover, for infinitely 
large matrices, the ensemble is invariant under H + H+al, where I i s  the unit matrix [Zl]. 
Therefore, p ( E )  is periodic with period a. If all the elements of an eigenvector v ~ ,  
HVE = EVE,  are shifted by n sites, the new vector, U‘, satisfies H‘v’ = (E-na)v’ ,  where H’ 
is another member of the BRME obtained from H by shifting both indexes of all its elements 
by n. At a = 0, all the vectors v’ corresponding to different n are degenerate with energy E. 
One therefore expects that the local average density of states, &(I? = E - n-a, a), where 
rima. is the site on which the eigenvector corresponding to the eigenvalue E is maximal, 
is a continuous function of a. In particular, for small enough values of a, &(,I?) is still a 
semicircle (see figure 1). Notice that the local density of states is crucial for inspecting the 
validity of the sloping-bund picture 1161. Specifically, it represents a section through the 
sloping band at a fixed value of the coordinate, i = 0 [22]. 

The transition in the averaged density of states from homogeneous to peaked behaviour 
is closely related to the breakdown of the sloping-band picture. For small electric field, 
the matrix elements of HI are much larger than the spacing between the levels of Ho, 
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Figure 1. a ( k )  as obtained numericdly from an ensemble of 250 mauices with b = 8, 
N = 400 and (a) U = 0. ( b )  U = 0.1 (histogam). Here and in all numericnl calculations, 
c = 1 .  The dashed C U N ~  is the prediction of (3). Clearly in (Q), &(E)  = @ ( E ) .  

U >> a, and therefore one expects that eigenvalues of H are found at arbitrary E with equal 
probability. In this range the average density of states is constant, 

I 
p ( E )  = - NlY 

(see figure 2). On the other hand, in the limit a -+ 00, 
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Figure 2. p ( E )  for the case of figure I(b) (histogram). Since p ( E )  = p ( - E ) ,  only the range 
E ,  0 is shown. The broken curve is the prediction of (8). 

which is negligible (but finite) everywhere except for a range of O@) around the Stark 
ladder energies, E, = ai. In both (4) and (5) we assume that N is very large and neglect 
the end effects which are bound to appear when E = O(Nor j2 ) .  

In addition to being continuous at a = 0, the local density of states, PL(& is also a 
useful instrument in the quantitative study of the transition between the homogeneous and 
peaked regimes. From the behaviour of eigenvectors under translations it follows that the 
probability of nmdx to take on any integer value between 1 and N is equal to 1 I N ,  barring 
finite size effects. Accordingly, 

(6) N 

and thus one expects the transition in p ( E )  to be centred around the value of 01, CUC, where 
the width of &(I?), "8, becomes equal to 01 itself, 

In order to find O ~ C ,  we shall analyse the behaviour of p ~ ( k )  (and in particular its width) 
and its relation to p ( E )  for the various ranges of a. 

At small 01, the sum in (6) is well approximated by the corresponding integral. While 
for infinite matrices this approximation is equivalent to that of (4). the integral version of 
(6) renders the finite size behaviour of p ( E )  with high accuracy. Using (3) for p ~ ( k ) ,  one 
obtains to leading order in N 

1 "  
P(E) = - &(E - nmara) 

h u = l  

ff&!c) = ffc . (7) 

- N u 1 2  - r e E < - N 0 1 / 2 +  r 

- N 0 1 / 2 f r c E <  " 1 2 - r  

N 0 1 / 2 - r  e E <  N 0 1 / 2 + r  
1 I N,f+ 
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where 
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and r is the radius of the semicircle, m, and we have assumed that Na/2  =- r (see 
figure 2). 

For a + CO, (5) and (6) are clearly equivalent. Here the eigenvalues are just the 
diagonal elements and the corresponding eigenvectors have only one non-vanishing element, 
vj = S ~ J .  Accordingly, &(I?) is a Gaussian of width ui = &a that is centred at I? = 0. 
We can obtain corrections to &(I?) by considering the perturbation due to the offdiagonal 
matrix elements. To second order in perturbation theory, the eigenvalues may be expressed 

The average of Et is simply a( i  - ( N  + 1)/2) (to any order). Accordingly, 

Notice that, for b = CO, the sum in (10) becomes n2/6. In figure 3. we check the range of a 
for which perturbation theory agrees with the numerical results. As one should expect, this 
range is smaller the larger b is. Although the algebra soon becomes tedious, expressions 

30.0 
2 

E 
a- 
20.0 

10.0 

0.0 I I I I 

Figure 3. The validity of (10) (full curve) is cheeked against numerical data The variance of 
a(&, u ~ .  as a function of .'/C!=, 1/12 for b = 8 (square), 12 (noss). and 16 (bullet). aid 
N = 90,200, and 356. respectively, such that x ni b2/N = 0.72 The ensemble size is chosen 
to include 10' eigenvdues. 
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analogous to that of (10) can also be found for higher moments of p&, M b .  These take 
the form [231 

where Cb does not depend on either 01 or b. According to (IO) and (1 I), as U gets smaller, 
the ratios R b  Mb/u?’ grow and thus &(E) becomes thinner and acquires larger tails 
in comparison to a Gaussian. Since for the semicircle the R b  ratios are smaller rather than 
larger than those of the Gaussian, &(U = 0) = (2n - l)!!(@)%/(n + l)!, this bend 
cannot continue indefinitely. In fact, at around uzb M 11, &(E)  momentarily recovers its 
Gaussian shape. 

One can obtain an estimate for UC, the solution of (7), using the perturbative form 
of ui, (10). For b = CO, the result, ac = 1.937.. . , lies close to the edge of the range of 
validity of (IO) (see figure 3). Therefore, in order to get a better estimate for 01c. we need 
to obtain the behaviour of u~ at arbitrary values of U .  The form 

E .  

2b 2a= +- 
E 1+c’cu2b c+w2 
2 U -  = 

where 

1 b l  

c‘ I 4  
c = - - 2 &  

satisfies both the small and large 01 limiting behaviours and in addition, fits the numerical 
results reasonably well (see figure 4). On the other hand, finite b corrections tend to 
compIicate the analysis of the numerical data. Accordingly, in figure 4, we repIaced the 

2 

E 
U- 

1.0 

/2b 
0.6 

0.4 

0.2 

0.0 I I I I I 

0 0.5 1 1.5 2 2.5 
a 

Figore 4. Same as in figure 3, only hex (12) is lilted to the numerically obtained values of ui 
for b = 8 (full curve), b = 12 (broken curve), and b = 16 (chain curve). 
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Moreover, we have kept the finite size variable fixed, x = b2/N = 0.72. Then a best fit 
is obtained when c‘ = 0.163, 0226 and 0.289 for b = 8, 12 and 16, respectively. Notice 
that the corresponding values of c are 2.834, 1.178 and 0.218 and therefore, one expects 
that c -+ 0 as b + 00. 

From figure (4), one obtains ac = 1.940, 1.912 and 1.912 for b = 8,12 and 16, 
respectively, which seems to converge to a value of about 1.91. Notice that this result is 
less than 2% away from the one previously obtained by perturbation theory. Moreover, for 
b >> 1, ac does not depend on b. This conclusion also emerges when using (12a) with 
c = 0 to solve (7). For large b, this leads to cuc = 2.97. 

We can now proceed to the discussion of the incipient stages of the transition in p ( E ) .  
This takes place via the gradual amplification of an oscillatory correction to the p ( E )  of (4), 
starting at a = 0 (see figure 5).  For small values of a, however, this oscillation is masked 
by statistical noise. In figure 6, we plot the average absolute value of the difference between 
the numerically obtained p ( E )  and that of (4), D(a), 

D(a)  = Na( l w d E l p ( E )  - ’1) NLY (13) 

where (. . .) denotes averaging over both the ensemble and different (ia. (i + 1)cu) intervals. 
For values of a close to LYC but such that D(a) exceeds the noise level we find that 
D(a)  = alcu13/4 where a, YN 2 x 

I I 1 
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10- 

I / 
0.35 1 

5*10-3 ' 

a 
Figure 6. D(a)  forb = 8 and N = 89 (see (13)). Two ensemble sizes are used such that the 
number of eigenvalues in Ihe first is IOs (square) and 2 x los in the second (cmss). The full 
line is, D(cr) = 2 x 10-4cr03/4, 

3. Conclusions 

Although the numerical study of the BRME could be pursued even further, it appears that the 
results we have presented should now be used as the basis for an analytical approach. On 
the other hand, the two features which are most likely relevant to possible experiments are 
that: (a) the electric field leads to the thinning of the effective sloping bands (see figures 3 
and 4) and (b) in the long range hopping regime, b >> 1, the value of the electric field 
around which the transition is centred, (YC, does not depend on b. Such experiments should 
consist of the spectroscopic investigation of ensembles of short, disordered wires subject to 
an extemal electric field. Although strictly speaking our model only applies to purely ID 
systems, it is natural to expect that quasi-10 systems would behave in a similar manner. 
For example. one can renormalize the physical problem such that each atomic layer in the 
section of a wire corresponds to an effective single site in a 1D TBM. On the other hand, in 
most metals the condition for the validity of the one-band "4 limits the value of N needed 
to observe the transition in the average density of states, NT, to be of O(1). This problem 
can be avoided by using disordered (with random layer thickness) superlattice wires. Here, 
the ratio between the energy gap and the conduction band width, RE EGJEB, can be 
made arbitrarily large by increasing the average distance between adjacent quantum wells. 
Since, NT = O(Rfi) ,  it should be possible to observe the homogeneous to peaked transition 
in the spectrum of such systems. 

The most natural extension of this work is the study of the level spacing distribution, 
P ( s ) ,  in the range of parameters where the hansition in p ( E )  occurs. While its general 
behaviour can be guessed from that of the p ( E )  itself, it has the advantage that it can be 
observed in an individual sample. That is, the ensemble average and the average over an 
energy range are equivalent for this quantity. This property, technically known in random 
matrix theory as ergodiciv, is also shared by p&) but not by p ( E )  itself. Since the former 
is not directly measurable, the P ( s )  appears to be the optimal quantity for experiment and 
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it shall be further studied in future work [IO, 111. 
Another interesting possibility is to generalize. the BRME to a multiple-band I g M .  In 

such a model, one can study the transition between the regime with localized eigenstates 
and that with extended ones which occurs as bands pass through avoided crossings. 
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